smodifier/model.py
2024-05-28 20:45:14 +05:30

192 lines
6.5 KiB
Python

import torch
import torch.nn as nn
from torch.nn import functional as F
import os
# hyperparameters
batch_size = 32 # how many independent sequences will we process in parallel?
block_size = 5 # what is the maximum context length for predictions?
max_iters = 2500
eval_interval = 50
learning_rate = 1e-4
device = 'cuda' if torch.cuda.is_available() else 'cpu'
eval_iters = 200
n_embd = 10
n_head = 5
n_layer = 5
dropout = 0.2
# ------------
torch.manual_seed(1337)
B = 1
T = 40
C = 10
vocab_size = 10
class Head(nn.Module):
""" one head of self-attention """
def __init__(self, head_size, block_size):
super().__init__()
self.key = nn.Linear(n_embd, head_size, bias=False)
self.query = nn.Linear(n_embd, head_size, bias=False)
self.value = nn.Linear(n_embd, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B,T,C = x.shape
k = self.key(x) # (B,T,C)
q = self.query(x) # (B,T,C)
# compute attention scores ("affinities")
wei = q @ k.transpose(-2,-1) * C**-0.5 # (B, T, C) @ (B, C, T) -> (B, T, T)
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
wei = F.softmax(wei, dim=-1) # (B, T, T)
wei = self.dropout(wei)
# perform the weighted aggregation of the values
v = self.value(x) # (B,T,C)
out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C)
return out
class MultiHeadAttention(nn.Module):
""" multiple heads of self-attention in parallel """
def __init__(self, num_heads, head_size, block_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size, block_size) for _ in range(num_heads)])
self.proj = nn.Linear(n_embd, n_embd)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out))
return out
class FeedFoward(nn.Module):
""" a simple linear layer followed by a non-linearity """
def __init__(self, n_embd):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, 4 * n_embd),
nn.ReLU(),
nn.Linear(4 * n_embd, n_embd),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
""" Transformer block: communication followed by computation """
def __init__(self, n_embd, n_head, block_size):
# n_embd: embedding dimension, n_head: the number of heads we'd like
super().__init__()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head, head_size, block_size)
self.ffwd = FeedFoward(n_embd)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class InterBlock(nn.Module):
""" Transformer block: communication followed by computation """
def __init__(self, n_embd, n_head, block_size):
# n_embd: embedding dimension, n_head: the number of heads we'd like
super().__init__()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head, head_size, block_size)
self.ffwd = FeedFoward(n_embd)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def forward(self, x):
x = x.view(B*T, C, 1)
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
x = x.view(B, T, C)
return x
# super simple bigram model
class BigramLanguageModel(nn.Module):
def __init__(self):
super().__init__()
# each token directly reads off the logits for the next token from a lookup table
self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
self.position_embedding_table = nn.Embedding(block_size, n_embd)
self.pos_emb_inter = nn.Embedding(10, 1)
self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head, block_size=block_size) for _ in range(n_layer)])
self.interBlocks = nn.Sequential(*[InterBlock(1, n_head=1, block_size=1) for _ in range(n_layer)])
self.l1 = nn.Linear(n_embd, 1000)
self.l2 = nn.Linear(1000, 1000)
self.l3 = nn.Linear(1000, n_embd)
self.ln_f = nn.LayerNorm(n_embd) # final layer norm
self.lm_head = nn.Linear(n_embd, vocab_size)
self.lm_head2 = nn.Linear(n_embd, vocab_size)
self.lm_head3 = nn.Linear(n_embd, vocab_size)
self.lm_head4 = nn.Linear(n_embd, vocab_size)
self.tanh = nn.Tanh()
self.softmax = nn.Softmax(dim=1)
def forward(self, idx, targets=None):
B, T, C = idx.shape
# idx and targets are both (B,T) tensor of integers
# tok_emb = self.token_embedding_table(idx) # (B,T,C)
pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)
#pos_emb_inter = self.pos_emb_inter(torch.arange(C, device=device))
x = idx.view(B,T,C)
#x = x + pos_emb_inter
x = idx + pos_emb # (B,T,C)
x = self.blocks(x) # (B,T,C)
#x = self.interBlocks(x) # (B,T,C)
# x = self.l1(x)
# x = self.softmax(x)
# x = self.l2(x)
# x = self.softmax(x)
# x = self.l3(x)
# x = self.softmax(x)
x = self.ln_f(x) # (B,T,C)
logits = self.lm_head(x) # (B,T,vocab_size)
logits = self.softmax(logits)
if targets is None:
loss = None
else:
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
# idx is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
# crop idx to the last block_size tokens
idx_cond = idx[:, -block_size:]
# get the predictions
logits, loss = self(idx_cond)
# focus only on the last time step
logits = logits[:, -1, :] # becomes (B, C)
# B, C = logits.shape
# # apply softmax to get probabilities
# probs = F.softmax(logits, dim=-1) # (B, C)
# # sample from the distribution
# idx_next = torch.multinomial(probs, num_samples=100) # (B, 1)
# append sampled index to the running sequence
logits = logits.view(1, B, C)
idx = torch.cat((idx, logits), dim=1) # (B, T+1)
return idx